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Vibration and Damping
Characteristics of a Beam
with a Partially Sandwiched
Viscoelastic Layer

TAE-HAK PARK

Agency for Defense Development, P.O. Box 35, Yuseong,
Taejon, 305-600, Korea

(Received 13 February 1996; In final form 28 May 1996)

The purpose of this study is to verify the vibration and damping characteristics of a
partially-layered elastic-viscoelastic-elastic structure both theoretically and experimen-
tally.

The fourth-order differential equations of motion are derived for the transverse vibra-
tion of a three-layered sandwich beam with a viscoelastic (or adhesive) core layer. The
transverse displacements of the constraining layer and the base beam are assumed to
have different parameters. Both the transverse normal strain and the longitudinal shear
strain of the viscoelastic core layer are included in the equations of motion. The sol-
ution to the resulting equations is obtained by solving a boundary value problem.

Numerical analysis of the equations and experimental measurements is illustrated by
a cantilever beam in transverse vibration.

The vibration and damping effects of completely and partially covered beams are
investigated and the effect of the position changes of partial coverage is intensively
analyzed.

Keywords: Vibration; damping; viscoelastic layer; constraining layer; partial coverage;
three-layered beam; completely covered beam

1. INTRODUCTION

It has long been observed that structural vibration and noise can be
reduced by utilizing adhesive layers to dissipate energy within vibra-
ting members [1-13]. Such reductions are of practical interest in
design applications where resonant excitation cannot be avoided.
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Especially, amplitude reduction at the resonant frequency and the
movement of the natural frequency are very important design factors
which should be considered when structures are subject to dynamic
environments. A large number of papers on sandwich structures have
been reported as follows.

Ditaranto [1] studied damped sandwich beams with arbitrary boun-
dary conditions. He derived the sixth-order differential equation of
motion in terms of longitudinal displacement for a freely vibrating
beam which considered shear deformation effects. Mead and Markus
[2] derived the sixth-order differential equation in terms of the trans-
verse motion for a three-layered beam in forced vibration which con-
sidered shear deformation effects. Yan and Dowell [3] suggested an
analytical method which considered the longitudinal displacements and
the rotary inertias of all the layers of a three-layered beam and the
shear strain of the base beam and the constraining layer. Douglas and
Yang [4] derived the eighth-order differential equation for a three-
layered beam which considered the normal deformation effects of a
viscoelastic (or adhesive) layer in forced vibration. Okazaki and Urata
['S,6] studied the damping characteristics of two-layered curved beams
and cylindrically curved plates with an unconstrained viscoelastic layer.
Rao and Crocker [7] analyzed the effects of viscoelastic material on the
natural frequencies of a simply-supported beam with a lap joint.

Plunkett and Lee {8] studied the damping effects of a three-layered
beam with a fully covered viscoelastic layer and a partially covered
constraining layer. Okazaki and Urata [9] derived the second order
differential equation which considered the longitudinal deformations of
a base beam and a constraining layer, and the fourth-order differential
equation which considered the transverse deformation of both ends of a
fixed beam which was partially covered at the center. Dewa, Okada and
Nagai [10] studied the damping effects in cases of both ends of the
viscoelastic layer being free and both ends being constrained.

In this paper, the vibration and damping characteristics of a par-
tially-covered elastic-viscoelastic-elastic beam were investigated theor-
etically and experimentally. The fourth order differential equations of
motion are derived from the transverse vibration of a three-layered
sandwich beam with a viscoelastic (or adhesive) core layer.

Most of the previous studies of the partially-covered beam [8—10]
were mainly interested in the maximum damping effects due to the
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shear deformation of the viscoelastic layer with the change of the
constraining layer’s length and boundary condition. But, in this paper,
both the transverse normal deformation and the longitudinal shear
deformation of a viscoelastic core layer are considered. The transverse
displacements of the constraining layer and the base beam are as-
sumed to have different parameters. The solution of the equations of
motion is obtained by solution of a boundary value problem. The
vibration and damping effects of completely- and partially-covered
beams are investigated and the effect of the position changes of a
partial coverage is intensively analyzed.

2. THEORY

The equations of motion of the three-layered beam, as shown in
Figure 1, are derived based on the following assumptions.

1) The viscoelastic (or adhesive) layer is modeled as a distributed
linearly viscoelastic spring which transmits shear and normal
stresses between adjacent elastic layers.

2) The continuity of displacements and stresses at contact points be-
tween viscoelastic layer and elastic layers are preserved.

3) The transverse displacements of elastic layers are different from
each other.

4) The base beam and the constraining layer are treated as Bernoulli-
Euler beams.

5) The mass of the viscoelastic layer is neglected because it is very
small and light compared with the base beam.

2.1. Relation of the Displacement and Strain of the
Viscoelastic Layer

The x-directional displacements at the top and the bottom of elastic
layer 1 and 2 in Figure 1(b), u,, and u,, are given as

Uy = __61 (1)
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FIGURE 1 Geometry and coordinate system for a three-layered beam, undeformed
and deformed.

Usy =0, (2)

where 6,(i=1,2) is a rotation angle of the neutral axis of the elastic
layer i. In the x-directional displacement, the bottom of the viscoelas-
tic layer is equal to the top of elastic layer 1 and the top of the
viscoelastic layer is equal to the bottom of elastic layer 2.

The relation of displacement and strain is given as

Uap — Uiy h,0,+h 6,
h, 2 h,

70(X) = G)

2ul9) = 2,(9) = 22 @

v
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where h,, p,(x) and ¢(x) are the thickness, shear strain and normal
strain of the viscoelastic layer and, w;(i = 1,2) is the z-directional dis-
placement of elastic layer i.

2.2. Relation of the Stress and Strain of the Viscoelastic
Layer

The relation of the stress and strain of the viscoelastic layer is given as

7, (%) = G, 7,(x) )
0,(x) = E, £,(x) (6)

where 7,(x), 0,(x), E, and G, are shear stress, normal stress, Young’s
modulus and shear modulus of the viscoelastic layer. We assume that
the viscoelastic material is isotropic and incompressible. Then Pois-
son’s ratio u is 0.5 and the relation of Young’s and shear modulus
becomes E, = 3G,.

Substituting Eq.(3) and Eq. (4) into Eq. (5) and Eq. (6), the results
are expressed as

_Gulhy 0, + h,8)
T U

av:m%_:w_ﬂ ®)

v

2.3. Equilibrium Equations
1) Egquilibrium equations of beam 1

From beam 1 in Figure 2, the sum of the z-directional forces is written
as

YF,= %dx +o,(x)dx —Fldx=0 )
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FIGURE 2 Force equilibrium for a differential volume of beam.

where F!, is the z-directional inertia force of beam 1 per unit width in
the y-direction and unit length in the x-direction.

*w, (x,1)

ot (10)

F£1 =phw,=ph

Substituting eq. (8) and eq.(10) into eq.(9) and rearranging it, we
obtain eq. (11):

%0., E, )

%= ‘h—(Wz‘W1)+P1h1 L8t

E, . E,
=<ﬁ_W1+P1 hy W1>"h—wz (11)

Assuming that clockwise rotation is positive, moment equilibrium is
expressed as

oM
ZM(M = d

hy h
iy — Q. dx + 1 (x)dx| =+=2 =0 (12)
X 2 2
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Substituting Eq. (7) into Eq.(12) and rearranging it, the results are
written as

oM G,(h, +h)h

4 g G,(h, + h)h
ox o 4h,

1
0
YT 4

20, =0  (13)

2) Equilibrium equations of beam 2

From beam 2 in Figure 2, the sum of the z-directional forces is shown as

%,
YF,= g;zdx—a,,(x)dx——Fizdx=O (14)

Substituting Eq. (8) into Eq. (14) and rearranging it, it can be written as

00., _E, "
_6_x_2 =h—U(W2 — W)+ pahy W,
Ew . E.w
=< hvz+92hzwz>— hvl (15)

The moment equilibrium of mass center o, is given as

oM h, h
Y M, = axxzdx—szdx+rv(x)dx<—23+—23>:0 (16)

Substituting Eq. (7) into Eq.(16) and rearranging it, the results are
shown as

oM G,(hy + h )k

G,(h, + h)h
x2 1 p\'¥2 12
ax Qx2+. 4hv 61+

4 h,

2g,=0 (17)

2.4. Equations of Motion

Differentiating Eq. (13) with respect to x in order to derive an equa-
tion of motion of the system, the results are

OMyy 00y | Golh +h)A 00, | Golby + )R, 00, o o)
oxt | ox 4h,  Ox 4h,  Ox
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where
ow,
=t 19
b ox )
FPw,
Mxi= - Eili—éx—z, l=1,2 (20)

Substituting Eq. (11), Eq. (19) and Eq. (20) into Eq. (18) and rearrang-
ing it, the results are shown as

*w *w &*w, E, E, ;
E111W4‘—R1h13;2—1—R h,— e +h— h—w2+p1h1w1=0 (21)
where

G, (h,+ h)
P A A e |
R, ih i=12 (22)

Treating beam 2 in a similar manner, the results are

*w 0w 0w, E
EI26 Rhlaz 2

R2 Za Pl *"“UW1+

E, .
A Wy + oW, =0 (23)

h,

v

The solutions of Eq.(21) and Eq.(23) are assumed to be harmonic
functions as follows:

w, = W,(x)e™ (24)
w, = Wy(x)e™ (25)

Substituting Eq. (24) and Eq. (25) into Eq. (21} and Eq. (23), the equa-
tions of motion are given as

oW, 2w, a*w, [(E,
EIX A% Y —R hl ale'—R1h2ﬁ+<h—*—plhlw2>VVl
E
— W, =0 (26)
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oW, aW, oW, (E,
Bl o S R T (3 )
E
— 74, =0 7

v

The solutions of Eq. (26) and (27) are assumed to be harmonic func-
tions as follows:

Wi(x) = A e* (28)
W,(x) = Be** (29)

where constants 4 and B should be determined by boundary condi-
tions.

Substituting Eq. (28) and Eq. (29) into Eq. (26} and Eq. (27), we ob-
tain a matrix of the form:

EU bl EU
E111/14—R1h112+<Z——p1h1w2>~R1h242~h— 4

v

=0 (30)
h, h

v

E E
—Ryhy A — 2 E,I,A* — Ryh, A* + <_” - p2h2w2> B

For a nontrivial solution, the determinant of the above matrix is set
equal to zero yielding eight roots of A. Finally, we have

8
Wy(x)= Y A,e™ (31)
n=1
8 8
W,(x) = Z B, et = z ®, A, e* (32)
n=1 n=1
where
E
R,h, ,1,3+h—”
Q,= - (33)

E
Ed, 2 — Rohy A7 + (h‘v - p2h2w2>

v
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3. APPLICATION OF THE EQUATIONS OF MOTION

3.1. Completely Covered Cantilever Beam

If the harmonic excitation F = F ¢™" is applied at the free edge of the
cantilever beam as in Figure 3(a), the steady state solution of the beam

can be solved as a boundary value problem.
The boundary conditions are as follows:

1) at x=0

8
wi= ) A,=0
n=1

Z,Ww
! X, u
Z.
A=
Z VA 7 7 o o d 7 o 77 7 7 7
7
é
7

(a) completely covered beam

AL LA

P q
element 1| element 2 element 3

Aty

{(b) partially covered beam

(34)

Fo eiut

hz
hv
hi

FO eir.)l

FIGURE 3 Geometry and coordinate system of beam specimen.
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o*w, &
= (Dn”{sAn =
axz ngl
Pwy 3
=5 ®,234,=0
ax3 ngl
2)atx=1
’*w, &
= Y 2en A, =0
0x* ,,;1
?Pw, F
ox*  EL
*w,

8
= @22 4,=0
Ox? ,21

Pw,  m *w,
ox®  E,I, of?
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(33)

(36)

(37

(38)

(39)

(40)

(41)

The mass of an accelerometer attached at the free edge of the canti-

lever beam, m is included in the right term of Eq. (41).

Getting A, from Eq. (34) through (41) and substituting the results

into Eq. (24) and Eq. (25), the steady state solution is obtained.

8
W, = Wlelwt = ( Z A" el,.x>elwt
n=1

8
— iwt __ AnX iwt
w, = W,e —<Z(I),,A,,e >e
n=1

42)

(43)
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3.2. Partially-covered Cantilever Beam

If the external force F=F_ e is applied at the free edge of a par-
tially-covered cantilever beam as in Figure 3(b), the solution of ele-
ment 2 is the same as Eq. (42) and Eq. (43). The equations of motion of
element 1 and element 3 are given as

4 2
0*wy; G, Wy,

L+ 0y Fr

2y ox*
J

I =0, j=13 (44)

bj
The solution of Eq. (44) is assumed as follows:
wbj — I/Vbj(x)eiwt — W/;’jeiwt (45)

where w,; is the z-directional displacement of element ;.
Substituting Eq. (45) into Eq. (44), we obtain

54ij _ pbjhbj
oxt  E,l,;

J

w* W,; =0 (46)

The solutions of Eq. (46) are assumed as follows:

C,e, 0<x<x, 47)

D+

Wy,= Y D,ef™ x,<x<x, (48)

n=1

As elements 1, 2 and 3 should satisfy continuity conditions at points p
and g of the base beam in Figure 3(b), displacements of the elements
should be the same at those points. The same can be applied to slopes,
moments and shear forces.

1) at x=x,

4 8
W=y Y G = Y et (49)

n=1 n=1
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ow,,  ow, 4 pry .
T = n‘élﬂ C,e nz& A,e (50)
azwbl 20 -
BuX1 _ pA AnX1 1
e 6 s Zﬂ e ngl/lnA,,e (51)
63wb1
52
e 2 Py (52
2) at x=x,
4 8
Wy =wis Y Dyebi = 3 A, et (53)
n=1 n=1
owyy 0w, &
1 D, P2 = 54
= I n§1ﬁ e Zi A, e* (54)
Pwyy Pwy &, 8
— . D ,8,,x2= 42A AyX> 55
G o LD = LA 43
Pwys _ 0wy s
= D,efr2 =% )34, 56
ox®  ox? ,,;ﬁ ¢ Z e’ (56)
The boundary conditions are as follows:
3) at x=0
4
wy = 3, C,=0 (57
n=1
owy, &
— = = 8
= LAG, (58)
4) at x=x,
2 8
TV Y 20,4, =0 (59)

2=
0x =~

n=
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Pw, &
2= Y 2P, A4,e =0 60
axS ngl nq)n ne ( )
5) at x=1x,
iw, &
=Y 220, 4,e=0 61
axz ngl nq)n ne ( )
0* Wy _
2D, A,er=0 62
ox? ; ¢ 2
6) at x =X,
2
0 Wb Z ﬂ2 D ef¥s =( (63)
o*w, F m 3w, (64

x> " E,,I,, E,,31b3 ar?

The effect of the mass(m) of accelerometer is considered in the second
term of the right side of Eq.(64). From Eq. (49) through (64), the
undetermined constants C,, D, and A4, are obtained. Substituting them
into Eq. (42), Eq.(43) and Eq. (45), displacement at arbitrary points
can be calculated.

4. NUMERICAL ANALYSIS, EXPERIMENTS AND
CONSIDERATIONS

Once the 2, are known from Eq. (30), the constants 4, are obtained by
boundary conditions. Then 4, and A, are substituted into Eq. (42) and
Eq. (43), where the displacement are calcu’ated.

Now, I am going to define an inertance that is one of frequency
response functions to compare the damping characteristics of speci-
mens. Inertance at an arbitrary point of the system is given as

. 2 8 2
INT(x,0) = :2(2 = %( Y cI>,,A,,e1~X> = —%Wz(x) (65)

o€ o \n=1
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A computer program has been developed in FORTRAN on a Cyber
180/860 system to perform the numerical solution. The configuration
and physical properties of the completely-covered specimen are given
in Table I. The thickness and properties of the elastic layers and the
viscoelastic layer of partially-covered specimens are the same as those
of the completely-covered specimen csl. The position and length of
the constraining layer is different as shown in Figure 4 and Figure 14,

The viscoelastic material chosen for study is production No.
SJ2015X Type 112 of 3M Co. The dynamic shear modulus G,, and
loss factor, «, of the viscoelastic material are shown in Table 1.

L= 196
[=65 | L= 130
( //_
SIS TIILYs
]
(a) partially covered specimen psi
o Li= 0 | Le=6 | Lo=85
by
SISSSILS L)
L !

(b) partially covered specimen ps?2
- Li= 130 { Lz =65 N
ez
- S

(c) partially covered specimen ps 3

- - N

o
i
—
e

FIGURE 4 Partially-covered specimens {unit: mm).

TABLEI Dimensions and physical data of completely-covered beam specimen

Specimen Dimensions (unit : mm)

and

Physical data L b hy h, h,

Specimen csl 195.00 10.00 2.00 1.00 2.00

Elastic beam Steel AISI 4130 : E = 1.99815 x 10'? (dyne/cm?)
Shear modulus:

Viscoelastic G, = (freq.)*>*7 x 5.966 x 10° x (1. + i) (dyne/cm?)

material

(T =23.88°¢) Loss factor:

o = 0.0520947 x In(freq.) + 0.644273
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Experiments were performed by impulse excitation [14] as in Fig-
ure 5. An impact hammer with an attached force transducer was used
to excite specimens and the responses were measured using an acceler-
ometer with a mass of 1 gram. The excitation and measuring points
were the tip of the cantilever beam. The frequency responses between
0 and 5000 Hz were recorded by an FFT analyzer.

Figure 6 shows the theoretical and experimental results of a com-
pletely-covered specimen csl. Agreement is seen to be good. These
data will be used as a reference for the damping characteristics of
partially-covered specimens.

Figures 7 through 9 show the theoretical and experimental results of
partially-covered specimens psl, ps2 and ps3, respectively. There is sig-
nificant agreement between them in the measured frequency range.
Most of the previous studies of the partially-covered beam [8—10] were
mainly interested in the maximum damping effects due to the shear
deformation of a viscoelastic layer with the change of the constraining
layer's length and boundary condition. In this study, however, the

%

Accelerometer

F.F.T Analyzer
Power
unit AN\ D

l‘EH a8 =
]

Personal computer

FIGURE 5 Experimental set-up.



11:20 22 January 2011

Downl oaded At:

BEAM WITH VISCOELASTIC LAYER 113
10
3 ——-— : calculation Pi= 2.00mm
10 —— : experiment he= 2.00mm
.
-~ 10 *4
- E
8= ]
u 10 *3
- E
@ ]
§ 10 LE
- 3
g ]
£
10 'é
'3
1
10 T R e ——r
10 100 1000 5000

Frequency (Hz)

FIGURE 6 Transverse driving point inertance of completely-covered specimen csl.

10 *y
3 : hy= 2.00mm
3 ——-—— : calculation = 1.00mm
10 °4 _— experiment hs= 2.00mm
-~ 10 "g
- 3
9 3
] 10 *g
3 ]
§ 10 ‘;
- 3
£ -
[} 4
<
= 10 3
14
10 " i e S SR e —— rmee—
10 100 1000 5000
Frequency (Hz)

FIGURE 7 Transverse driving point inertance of partially-covered specimen ps1.
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103
3 ——~=—: calculation n:: 2.00mm
10° ——— . experiment hy= 2.00mm

a/sec’
N

)
—
<
-
FETS T S U BRI ]

Inertance (
o

-
o
Lbaannl 114 PRI

o
10 —— T ———— ——— T — —

100 1000 5000
Frequency (Hz)

[=]

FIGURE 8 Transverse driving point inertance of partially-covered specimen ps2.

10°
3 ———— - . hy= 2.00mm
] : caleulation ho= 1.00mm
10°4 -—— ! experiment hp= 2.00mm
1
— 10 *3
"o E
@ ]
vz
5 10
E
] .
1 E
g 073
- pa
5 3
Q +
= 10 3
3
3
13
10~ T Ty v Ty —————T—
10 100 1000 5000

Frequency (Hz)
FIGUREY Transverse driving point inertance of partially-covered specimen ps3.
normal deformaion, as well as the shear deformation, was considered

and the solution of the equations of motion was obtained by solving a
boundary value problem. It was assumed that the transverse displace-
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ments of a base beam and a constraining layer had different par-
ameters because of differing boundary conditions of the constraining
layer and the base beam.

Figure 10 indicates the comparison of the transverse driving point
inertances of a bare base beam and a completely-covered specimen
csl. The reduction of the system response at the resonant frequencies
approaches 21 db on average. It shows that the damping effects of
viscoelastic material are significant.

Normally, the design purpose of compositely layered structures is to
minimize the weight and to maximize the damping effect of the sys-
tem. Therefore, it is worth comparing and investigating the vibration
and damping effects, and the weight reduction effects, between the
partially-covered beams and the completely-covered beams.

Figures 11 through 13 show a comparison of the transverse driving
point inertances of a completely-covered specimen csl and partially-
covered specimens psl, ps2 and ps3, respectively. The weight of each
constraining layer of the partially-covered specimens is one-third that
of the completely-covered specimen. The reduction of the system res-
ponse at the resonant frequencies of each specimen approaches 20 db

———~— : bare bagse beam
—— : completely covered beam cst

)
o

n/sec’
N

FIBS TV BRI IV S ETL IR I11 B W S VY

Inertance {
>

sl 1o

107 — T T T T T T T

L
100 1000
Frequency (Hz)

(o]

FIGURE 10 Comparison of transverse driving point inertances of bare-base beam
and completely-covered specimen csl.
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10 *3
3] ———— : partially covered beam ps1
0% completely covered beom c¢s1
—~ 10 'y
“ 3
al= i
) 10°4
3
- 3
I 10 * 3
8
3
8 3
§ ]
~ 10 3
13
10" T — T v T T r—v
10 100 1000 5000

Frequency (Hz)

FIGURE 11 Comparison of transverse driving point inertances of completely- and
partially-covered specimens cs1 and psl.

10 %3
3 ———-— : partially covered beam ps2
10,; completely covered beam cs1
—~ 10*g
“ 3
@ -
w2z
] 10°3
- ]
2 10 74
| 3
e €
§ ]
~ 10 3
T3
10 T T T T T T —r
10 100 1000 5000
Frequency (Hz)

FIGURE 12 Comparison of transverse driving point inertances of completely- and
partially-covered specimens ¢s1 and ps2.
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FIGURE 13 Comparison of transverse driving point inertances of completely- and
partially-covered specimens cs1 and ps3.

on average, as shown in Table II. It is important to note that the
damping effect of partially-covered specimens is very similar to that of
a completely-covered specimen. In Table II, the damping effect of the
partially-covered specimen ps3 is greater than that of psl and ps2 in
the 1st resonant frequency and resonant frequencies greater than the
4th. Also, the movement of the st resonant frequency is larger when
compared with the other specimens. This is a result of the concen-
trated mass effects of the free edge. In the case of a cantilever beam, it
means that the vibration and damping effects are increased if the free
edge is partially layered. The damping effect of ps2 is greater than psl
or ps3 at the 2nd resonant frequency. This is because the partially-
covered position is located at the center of the cantilever beam affect-
ing the second mode shape.

From the above results, if the partial coverage is positioned near the
free edge of the cantilever beam, the vibration and damping effects of
the partially-covered beam are more significant and economical than
those of the completely-covered beam. Consequently, it can be sup-
posed that the vibration and damping control of a specific mode of a
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system is possible because the dynamic characteristics of the system
change considerably depending on the position of partial coverage.

In Figure 14: (2) is the 2nd mode shape of the base beam. (b) shows
a beam with partially-covered layers at the position of maximum
displacement of the 2nd mode shape for vibration and damping con-
trol. Similarly, (c) and (d) are for vibration and damping control of the
3rd mode. The total weight of the constraining layer is one-third that
of a completely covered beam.

Figure 15 shows the comparison of interances of completely-and
partially-covered specimens csl and ps4. At the second resonant fre-
quency, it is shown that the vibration and damping control by the
partial coverage is more effective.

AT

s =10 T
L - 195 (185 x 10 ) —— ] I‘b=10—|

(b) partially covered specimen ps4

(¢) third mode shape of bare base beam

Z

é%— 38.0 —-1 19.6 |—— 58.5 ——-119.5 i—-se.o-{ 19.5 he=2.0

% W _— hv=1.0 P
/ hi=2.0 ]
Ae L = 195 (19.5 x 10 )—————j l-‘b=10—l

(d) partially covered specimen ps5

FIGURE 14 Mode shapes and geometry of partially-covered specimens.
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FIGURE 15 Comparison of transverse driving point inertances of completely- and
partially-covered specimens ¢s1 and ps4.
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FIGURE 16 Comparison of transverse driving point inertances of completely- and
partially-covered specimens cs1 and psS.
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Figure 16 indicates the effect of the partially-covered specimen psS5.
If we compare Figure 16 with Figure 15, it shows the clear effect on
the 3rd resonant frequency.

From the above mentioned results, it can be concluded that the
damping capacity and the movement of the resonant frequencies of
a partially-covered beam, with one or some constrained viscoelastic
layers, are superior to those of a completely-covered beam. The effi-
ciency depends on the position of the partial coverage. Therefore, if he
vibrational characteristics of a system are known and it is necessary to
control a specific mode, partial coverage can be a more effective ap-
proach than complete coverage.

5. CONCLUSIONS

The results of theoretical analysis and experiments on the sandwich
beam with a viscoelastic core are as follows:

1) The fourth-order differential equations of motion are derived for
the transverse vibration of completely- and partially-covered be-
ams. The equations include both the transverse normal strain and
the longitudinal shear strain of the viscoelastic layer. The trans-
verse displacements of the constraining layer and the base beam
are assumed to have different parameters. The steady state solution
was solved as a boundary value problem applying the boundary
and the continuity conditions. The results of the numerical calcula-
tions and experiments show good agreement.

2) If the partial coverage is positioned near the free edge of the canti-
lever beam. It can be more effective and economical for vibration
and damping control than a completely-covered beam.

3) If the vibrational characteristics of a system are known and the
partial coverage is located at the maximum displacement region of
a mode shape, the vibration and damping effect can be maximized
and the weight increment of a constraining layer can be minimized.
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