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The purpose of this study is to verify the vibration and damping characteristics of a 
partially-layered elastic-viscoelastic-elastic structure both theoretically and experimen- 
tally. 

The fourth-order differential equations of motion are derived for the transverse vibra- 
tion of a three-layered sandwich beam with a viscoelastic (or adhesive) core layer. The 
transverse displacements of the constraining layer and the base beam are assumed to 
have different parameters. Both the transverse normal strain and the longitudinal shear 
strain of the viscoelastic core layer are included in the equations of motion. The sol- 
ution to the resulting equations is obtained by solving a boundary value problem. 

Numerical analysis of the equations and experimental measurements is illustrated by 
a cantilever beam in transverse vibration. 

The vibration and damping effects of completely and partially covered beams are 
investigated and the effect of the position changes of partial coverage is intensively 
analyzed. 

Keywords: Vibration; damping; viscoelastic layer; constraining layer; partial coverage; 
three-layered beam; completely covered beam 

1. INTRODUCTION 

It has long been observed that structural vibration and noise can be 
reduced by utilizing adhesive layers to dissipate energy within vibra- 
ting members [l-131. Such reductions are of practical interest in 
design applications where resonant excitation cannot be avoided. 
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98 T.-H. PARK 

Especially, amplitude reduction at the resonant frequency and the 
movement of the natural frequency are very important design factors 
which should be considered when structures are subject to dynamic 
environments. A large number of papers on sandwich structures have 
been reported as follows. 

Ditaranto [ 11 studied damped sandwich beams with arbitrary boun- 
dary conditions. He derived the sixth-order differential equation of 
motion in terms of longitudinal displacement for a freely vibrating 
beam which considered shear deformation effects. Mead and Markus 
[2] derived the sixth-order differential equation in terms of the trans- 
verse motion for a three-layered beam in forced vibration which con- 
sidered shear deformation effects. Yan and Dowell [3] suggested an 
analytical method which considered the longitudinal displacements and 
the rotary inertias of all the layers of a three-layered beam and the 
shear strain of the base beam1 and the constraining layer. Douglas and 
Yang [4] derived the eighth-order differential equation for a three- 
layered beam which considered the normal deformation effects of a 
viscoelastic (or adhesive) layer in forced vibration. Okazaki and Urata 
[ S ,  61 studied the damping characteristics of two-layered curved beams 
and cylindrically curved plates with an unconstrained viscoelastic layer. 
Rao and Crocker [7] analyzed the effects of viscoelastic material on the 
natural frequencies of a simply-supported beam with a lap joint. 

Plunkett and Lee [S] studied the damping effects of a three-layered 
beam with a fully covered viscoelastic layer and a partially covered 
constraining layer. Okazaki and Urata [9] derived the second order 
differential equation which considered the longitudinal deformations of 
a base beam and a constraining layer, and the fourth-order differential 
equation which considered the transverse deformation of both ends of a 
fixed beam which was partially covered at the center. Dewa, Okada and 
Nagai [lo] studied the damping effects in cases of both ends of the 
viscoelastic layer being free and both ends being constrained. 

In this paper, the vibration and damping characteristics of a par- 
tially-covered elastic-viscoelastic-elastic beam were investigated theor- 
etically and experimentally. The fourth order differential equations of 
motion are derived from the transverse vibration of a three-layered 
sandwich beam with a viscolelastic (or adhesive) core layer. 

Most of the previous studlies of the partially-covered beam [S- lo] 
were mainly interested in the maximum damping effects due to the 
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BEAM WITH VISCOELASTIC LAYER 99 

shear deformation of the viscoelastic layer with the change of the 
constraining layer’s length and boundary condition. But, in this paper, 
both the transverse normal deformation and the longitudinal shear 
deformation of a viscoelastic core layer are considered. The transverse 
displacements of the constraining layer and the base beam are as- 
sumed to have different parameters. The solution of the equations of 
motion is obtained by solution of a boundary value problem. The 
vibration and damping effects of completely- and partially-covered 
beams are investigated and the effect of the position changes of a 
partial coverage is intensively analyzed. 

2. THEORY 

The equations of motion of the three-layered beam, as shown in 
Figure 1, are derived based on the following assumptions. 

The viscoelastic (or adhesive) layer is modeled as a distributed 
linearly viscoelastic spring which transmits shear and normal 
stresses between adjacent elastic layers. 
The continuity of displacements and stresses at contact points be- 
tween viscoelastic layer and elastic layers are preserved. 
The transverse displacements of elastic layers are different from 
each other. 
The base beam and the constraining layer are treated as Bernoulli- 
Euler beams. 
The mass of the viscoelastic layer is neglected because it is very 
small and light compared with the base beam. 

2.1. Relation of the Displacement and Strain of the 
Viscoelastic Layer 

The x-directional displacements at the top and the bottom of elastic 
layer 1 and 2 in Figure l(b), ulr and u~~ are given as 
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100 T.-H. PARK 

(a) Three-layered laminated beam 

FIGURE 1 
and deformed. 

Geometry and coordinate system for a three-layered beam, undeformed 

where O,(i = 1,2) is a rotation angle of the neutral axis of the elastic 
layer i. In the x-directional displacement, the bottom of the viscoelas- 
tic layer is equal to the top of elastic layer 1 and the top of the 
viscoelastic layer is equal to the bottom of elastic layer 2. 

The relation of displacement and strain is given as 

w2 - w 1  &"(X) = &,(X) = ~ 

h" 
(4) 
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BEAM WITH VTSCOELASTIC LAYER 101 

where h,, y,(x) and E,(x) are the thickness, shear strain and normal 
strain of the viscoelastic layer and, w i ( i  = 1,2) is the z-directional dis- 
placement of elastic layer i .  

2.2. Relation of the Stress and Strain of the Viscoelastic 
Layer 

The relation of the stress and strain of the viscoelastic layer is given as 

where t,(x), a,(x), E ,  and G, are shear stress, normal stress, Young's 
modulus and shear modulus of the viscoelastic layer. We assume that 
the viscoelastic material is isotropic and incompressible. Then Pois- 
son's ratio p is 0.5 and the relation of Young's and shear modulus 
becomes E ,  = 3G,. 

Substituting Eq. (3) and Eq. (4) into Eq. ( 5 )  and Eq. (6), the results 
are expressed as 

2.3. Equilibrium Equations 

1) Equilibrium equations of beam 1 

From beam 1 in Figure 2, the sum of the z-directional forces is written 
as 

aQ,, 1 F ,  = --dx + rJ,(x) dx - FL, dx = 0 ax (9) 
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102 T.-H. PARK 

FIGURE 2 Force equilibrium for a differential volume of beam. 

where Fa, is the z-directional inertia force of beam 1 per unit width in 
the y-direction and unit length in the x-direction. 

Substituting eq. (8) and eq. (10) into eq. (9) and rearranging it, we 
obtain eq. (1 1): 

Eu 
ax h" 

= - -(wz - wl) + p1 h ,  W l  

= ( E !  w , + p1 h ,  w ,) - E w2 

h" hu 

Assuming that clockwise rotation is positive, moment equilibrium is 
expressed as 
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BEAM WITH VISCOELASTIC LAYER 103 

Substituting Eq. (7) into Eq. (12) and rearranging it, the results are 
written as 

2) Equilibrium equations of beam 2 

From beam 2 in Figure 2, the sum of the z-directional forces is shown as 

Substituting Eq. (8) into Eq. (14) and rearranging it, it can be written as 

= 3 ( w 2  - w l )  + p2 h 2 w 2  
dx h, 

= (y + p2 h,  w2) - - E u  W l  

h U  

The moment equilibrium of mass center o2 is given as 

Substituting Eq. (7) into Eq. (16) and rearranging it, the results are 
shown as 

2.4. Equations of Motion 

Differentiating Eq. (13) with respect to x in order to derive an equa- 
tion of motion of the system, the results are 
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where 

T.-H. PARK 

aw . o i = -  
ax (19) 

Substituting Eq. (ll), Eq. (19) and Eq. (20) into Eq. (18) and rearrang- 
ing it, the results are shown a s  

adw,  azw,  a Z W 2  E,  E, 
EII1-- R l h l T -  R , h 2 T + - w 1  - - ~ 2 + p , h , W ,  = O  (21) 

ax4 ax dx hu h, 

where 

Treating beam 2 in a similar manner, the results are 

The solutions of Eq. (21) and Eq. (23) are assumed to be harmonic 
functions as follows: 

w1 = Wl(x)eiWt (24) 

Substituting Eq. (24) and Eq. (25)  into Eq. (21) and Eq. (23), the equa- 
tions of motion are given as 
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BEAM WITH VISCOELASTIC LAYER 105 

(27) E" 
hv 

--w1 = o  

The solutions of Eq. (26) and (27) are assumed to be harmonic func- 
tions as follows: 

W2(X) = B enx (29) 

where constants A and B should be determined by boundary condi- 
tions. 

Substituting Eq. (28) and Eq. (29) into Eq. (26) and Eq. (27), we ob- 
tain a matrix of the form: 

E,1,14-Rlh,112+ 

- R2h,  1' 

For a nontrivial solution, the determinant of the above matrix is set 
equal to zero yielding eight roots of 1. Finally, we have 

8 8 

W2(x) = C B, e * n x  = C an A,  eAnx 
n = l  n = 1  

where 
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106 T.-H. PARK 

3. APPLICATION OF THE EQUATIONS OF MOTION 

3.1. Completely Covered Cantilever Beam 

If the harmonic excitation F = FoeiWt is applied at the free edge of the 
cantilever beam as in Figure 3(a), the steady state solution of the beam 
can be solved as a boundary value problem. 

The boundary conditions are as follows: 

1) at x = O  

8 

w1 = 2 A,=O 
n = l  

- x  u 

(34) 

Fo eiwt 

(a) completely covered beam 

(b) partially covered beam 

FIGURE 3 Geometry and coordinate system of beam specimen. 
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2) at x = 1 

a 3 w ,  F 
a X 3  E,Z, 
-- -- 

107 

(35) 

(39) 

(41) 
a3w2 m a2w2 
ax3 E,I, a t 2  
-- 

The mass of an accelerometer attached at the free edge of the canti- 
lever beam, rn is included in the right term of Eq. (41). 

Getting A, from Eq. (34) through (41) and substituting the results 
into Eq. (24) and Eq. (25), the steady state solution is obtained. 
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108 T.-H. PARK 

3.2. Partially-covered Cantilever Beam 

If the external force F = Foe:'"' is applied at the free edge of a par- 
tially-covered cantilever beam as in Figure 3(b), the solution of ele- 
ment 2 is the same as Eq. (421 and Eq. (43). The equations of motion of 
element 1 and element 3 are given as 

The solution of Eq. (44) is assumed as follows: 

where wbj is the z-directional displacement of element j .  
Substituting Eq. (45) into Eq. (44), we obtain 

The solutions of Eq. (46) are assumed as follows: 

4 

w,, = c cn eBnX, 0 < x < x1 
n =  1 

(47) 

As elements 1, 2 and 3 should satisfy continuity conditions at points p 
and q of the base beam in Figure 3(b), displacements of the elements 
should be the same at those points. The same can be applied to slopes, 
moments and shear forces. 

I )  at x = x I  

4 8 

wb, = w1 ; 1 C, epnxl = A,, eAnxX' 
n = l  n = l  

(49) 
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BEAM WITH VISCOELASTIC LAYER 109 

(50) 

2) at x = x 2  

n =  1 n =  1 

The boundary conditions are as follows: 
3) at x = O  

4 

Wbl  = c c,=o 
n = 1  

4) at x = x l  
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5 )  at x = x 2  

6) at x = x 3  

T.-H. PARK 

azw, F m a2wb3 
ax3  E, , I~ ,  E,J,, at2 

+-- - -- 

The effect of the mass@) of accelerometer is considered in the second 
term of the right side of E3q. (64). From Eq. (49) through (64), the 
undetermined constants C,, D, and A ,  are obtained. Substituting them 
into Eq. (42), Eq. (43) and Eq. (49, displacement at arbitrary points 
can be calculated. 

4. NUMERICAL ANALYSIS, EXPERIMENTS AND 
CONSIDERATIONS 

Once the A, are known from Eq. (30), the constants A ,  are obtained by 
boundary conditions. Then A,, and A ,  are substituted into Eq. (42) and 
Eq. (43), where the displacement are calcdated. 

Now, I am going to define an inertance that is one of frequency 
response functions to compare the damping characteristics of speci- 
mens. Inertance at an arbitrary point of the system is given as 
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BEAM WITH VISCOELASTIC LAYER 111 

A computer program has been developed in FORTRAN on a Cyber 
180/860 system to perform the numerical solution. The configuration 
and physical properties of the completely-covered specimen are given 
in Table I. The thickness and properties of the elastic layers and the 
viscoelastic layer of partially-covered specimens are the same as those 
of the completely-covered specimen csl. The position and length of 
the constraining layer is different as shown in Figure 4 and Figure 14. 

The viscoelastic material chosen for study is 
SJ2015X Type 112 of 3M Co. The dynamic shear 
loss factor, a, of the viscoelastic material are shown 

production No. 
modulus Go, and 
in Table I. 

L = 195 J 

(a) partially covered specimen ps 1 

L1= 85 I L z =  85 I L s =  85 
I I 

(b) partially covered specimen ps 2 

L I  = 130 Lz = 65 f@; 
( c )  partially covered specimen ps 3 

FIGURE 4 Partially-covered specimens (unit: mm) 

TABLE I Dimensions and physical data of completely-covered beam specimen 

Specimen Dimensions (unit : mm) 
and 
Physical data L b h, h" h, 

Specimen csl 195.00 10.00 2.00 1 .oo 2.00 

Elastic beam 

Viscoelastic 
material 
( T =  23.88"~) Loss factor: 

Steel AISI 4130: E = 1.99815 x 10" (dyne/cm2) 
Shear modulus: 
G, = (freq.)0.557 x 5.966 x lo5 x (1. + ia) (dynelcm') 

a = 0.0520947 x In(freq.) + 0.644273 
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112 T.-H. PARK 

T 

Accelerometer 

Experiments were performed by impulse excitation [14] as in Fig- 
ure 5. An impact hammer with an attached force transducer was used 
to excite specimens and the responses were measured using an acceler- 
ometer with a mass of 1 gram. The excitation and measuring points 
were the tip of the cantilever beam. The frequency responses between 
0 and 5000 Hz were recorded by an FFT analyzer. 

Figure 6 shows the theoretical and experimental results of a com- 
pletely-covered specimen cs 1. Agreement is seen to be good. These 
data will be used as a reference for the damping characteristics of 
partially-covered specimens. 

Figures 7 through 9 show the theoretical and experimental results of 
partially-covered specimens psl, ps2 and ps3, respectively. There is sig- 
nificant agreement between them in the measured frequency range. 
Most of the previous studies of the partially-covered beam [S-101 were 
mainly interested in the maximum damping effects due to the shear 
deformation of a viscoelastic layer with the change of the constraining 
layer's length and boundary condition. In this study, however, the 

Power 
u n i t  

1 F.F.T Analyzer 

7 - 1  Personal compu ter  

FIGURE 5 Experimental set-up. 
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10 6 %  

_ _ - -  . h,= 2.00rnrn 
h.= 1.00rnrn 

: experiment h2= 2.00rnrn 
. calculation 

113 

10 

FIGURE 6 Transverse driving point inertance of completely-covered specimen csl. 

1 0 '  
h,= 2.00rnrn 

: calculotian h,= 1.00rnrn - : experiment h2= 2.00rnm 

_ _ _ _  
10 ' 

10 100 1000 51 
Freuuency (Hz) 

)O 

FIGURE 7 Transverse driving point inertance of partially-covered specimen ps 1. 
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h,= 2.00mm 
h,= 1.00mm 

: experiment h2= 2.00mm 
: calculation 

I 

10 100 1000 51 10 

Frequency (Hz) 

FIGURE 8 Transverse driving point inertance of partially-covered specimen ps2. 

_- : experiment 
10 ’  

100 1000 5000 

Frequency (Hz) 

FIGURE 9 Transverse driving point inertance of partially-covered specimen ps3 

normal deformaion, as well as the shear deformation, was considered 
and the solution of the equations of motion was obtained by solving a 
boundary value problem. It was assumed that the transverse displace- 
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10 ' 9  

ments of a base beam and a constraining layer had different par- 
ameters because of differing boundary conditions of the constraining 
layer and the base beam. 

Figure 10 indicates the comparison of the transverse driving point 
inertances of a bare base beam and a completely-covered specimen 
csl. The reduction of the system response at  the resonant frequencies 
approaches 21 db on average. It shows that the damping effects of 
viscoelastic material are significant. 

Normally, the design purpose of compositely layered structures is to 
minimize the weight and to maximize the damping effect of the sys- 
tem. Therefore, it is worth comparing and investigating the vibration 
and damping effects, and the weight reduction effects, between the 
partially-covered beams and the completely-covered beams. 

Figures 11 through 13 show a comparison of the transverse driving 
point inertances of a completely-covered specimen cs 1 and partially- 
covered specimens psl, ps2 and ps3, respectively. The weight of each 
constraining layer of the partially-covered specimens is one-third that 
of the completely-covered specimen. The reduction of the system res- 
ponse at the resonant frequencies of each specimen approaches 20 db 

: bare base beam 
: completely covered beam csl 

_ _ _ _  

i 

10 -1  I I I 4 

Fresuency (Hz) 
10 100 1000 5000 

FIGURE 10 Comparison of transverse driving point inertances of bare-base beam 
and completely-covered specimen csl. 
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10 '1 

1 0 ' g  
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: completely covered beam csl 

1 %  

FIGURE 11 
partially-covered specimens csl and psl. 

Comparison of trannerse driving point inertances of completely- and 

partially covered beam ps2  
completely covered beam csl 

- 1 0 '  

10 -I-T I ,  I 

10 100 1000 5000 

Frequency (Hz) 

FIGURE 12 
partially-covered specimens csl and ps2. 

Comparison of transverse driving point inertances of completely- and 
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1 1  

10 -' I I 

117 

10 

FIGURE I3 
partially-covered specimens csl and ps3. 

Comparison of transverse driving point inertances of completely- and 

on average, as shown in TableII. It is important to note that the 
damping effect of partially-covered specimens is very similar to that of 
a completely-covered specimen. In Table 11, the damping effect of the 
partially-covered specimen ps3 is greater than that of psl and ps2 in 
the 1st resonant frequency and resonant frequencies greater than the 
4th. Also, the movement of the 1st resonant frequency is larger when 
compared with the other specimens. This is a result of the concen- 
trated mass effects of the free edge. In the case of a cantilever beam, it 
means that the vibration and damping effects are increased if the free 
edge is partially layered. The damping effect of ps2 is greater than psl 
or ps3 at the 2nd resonant frequency. This is because the partially- 
covered position is located at the center of the cantilever beam affect- 
ing the second mode shape. 

From the above results, if the partial coverage is positioned near the 
free edge of the cantilever beam, the vibration and damping effects of 
the partially-covered beam are more significant and economical than 
those of the completely-covered beam. Consequently, it can be sup- 
posed that the vibration and damping control of a specific mode of a 
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system is possible because the dynamic characteristics of the system 
change considerably depending on the position of partial coverage. 

In Figure 14: (a) is the 2nd mode shape of the base beam. (b) shows 
a beam with partially-covered layers at the position of maximum 
displacement of the 2nd mode shape for vibration and damping con- 
trol. Similarly, (c) and (d) are for vibration and damping control of the 
3rd mode. The total weight of the constraining layer is one-third that 
of a completely covered beam. 

Figure 15 shows the conlparison of interances of completely-and 
partially-covered specimens csl and ps4. At the second resonant fre- 
quency, it is shown that the vibration and damping control by the 
partial coverage is more effective. 

19.5 

hz =2.0 

hi =2.0 
hv=1.0 

L = 495 (19.5 x 10 ) 

(b) partially covered specimen ps  4 

(c) third mode shape of bare base beam 

hz =2.0 
hv=1.0 
hi =2.0 

(d) partially covered specimen ps 5 

FIGURE 14 Mode shapes and geometry of partially-covered specimens. 
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FIGURE 15 
partially-covered specimens csl and ps4. 

Comparison of transverse driving point inertances of completely- and 
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FIGURE 16 
partially-covered specimens csl and ps5. 
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Figure 16 indicates the effect of the partially-covered specimen ps5. 
If we compare Figure 16 with Figure 15, it shows the clear effect on 
the 3rd resonant frequency. 

From the above mentioned results, it can be concluded that the 
damping capacity and the movement of the resonant frequencies of 
a partially-covered beam, with one or some constrained viscoelastic 
layers, are superior to those of a completely-covered beam. The effi- 
ciency depends on the position of the partial coverage. Therefore, if he 
vibrational characteristics of a system are known and it is necessary to 
control a specific mode, partial coverage can be a more effective ap- 
proach than complete coverage. 

5. CONCLUSIONS 

The results of theoretical analysis and experiments on the sandwich 
beam with a viscoelastic core are as follows: 

1) The fourth-order differential equations of motion are derived for 
the transverse vibration of completely- and partially-covered be- 
ams. The equations include both the transverse normal strain and 
the longitudinal shear strain of the viscoelastic layer. The trans- 
verse displacements of the constraining layer and the base beam 
are assumed to have different parameters. The steady state solution 
was solved as a boundary value problem applying the boundary 
and the continuity conditions. The results of the numerical calcula- 
tions and experiments show good agreement. 

2) If the partial coverage is positioned near the free edge of the canti- 
lever beam. It can be more effective and economical for vibration 
and damping control than a completely-covered beam. 

3) If the vibrational characteristics of a system are known and the 
partial coverage is located at the maximum displacement region of 
a mode shape, the vibration and damping effect can be maximized 
and the weight increment of a constraining layer can be minimized. 
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